
Lisp Macros

Aidan Hall

23rd November 2023



Lisp

(define (fibonacci n)
(if (< n 2)

1
(+ (fibonacci (- n 1))

(fibonacci (- n 2)))))
(fibonacci 5)

8



Pairs
▶ Pairs in Lisp are called cons cells.

▶ (cons 1 2)

(1 . 2)

▶ The first and second components are called the car and cdr.

(car (cons 1 2))

1

(cdr (cons 1 2))

2



List Structure

▶ Linked lists are built from cons cells (pairs), and are terminated by (), the empty
list1.

(list 1 2 3 4)

1list is a function that makes a list of its arguments.



Quotation

▶ When quoted with ’, an expression is not evaluated.

▶ (let ((x 5)) x)

5

▶ (let ((x 5)) 'x)

x



Quasiquotation
▶ It is sometimes convenient to evaluate parts of a quoted expression. For this, we

use the quasiquote (‘) and unquote (,) operators.

`(1 2 ,(+ 3 4))

(1 2 7)

▶ If an expression evaluates to a list, the result can be spliced into the surrounding
quoted form with the ,@ operator.

`(1 2 ,(list 3 4))

(1 2 (3 4))

`(1 2 ,@(list 3 4))

(1 2 3 4)



Code as Data
▶ Lisp code can be represented as Lisp data.

▶ (lambda (x) x)

#<procedure 654a139a36e8 at <unknown port>:8:1 (x)>

▶ '(lambda (x) x)

(lambda (x) x)



Macros

▶ Macros are Lisp functions that run at compile time and produce Lisp code.

▶ (defmacro plus1 (x)
`(+ 1 ,x))

(macroexpand-1 '(plus1 5))

(+ 1 5)

▶ Their arguments are not evaluated before being passed to them.
▶ This means the arguments don’t need to be valid Lisp code.

▶ Since you have access to the whole language in macros, they can perform arbitrary
transformations on the input.



Implementing let as a Macro

We briefly saw that a let expression is equivalent to a λ application:

(let ((a 2) (b 3))
(+ a a b))

is equivalent to:

((lambda (a b)
(+ a a b))

2 3)

We can use a macro to transform the first expression into the second!



Splitting up the Variable Bindings
▶ In a let expression, the variable bindings are in the following form:

'((var val) (var val))

▶ We can get the variable names by taking the car of each element:

(map car '((var val) (var val)))

(var var)

▶ We can get the values with cadr: (cadr x) = (car (cdr x)).

(map cadr '((var val) (var val)))

(val val)



mylet

Now we can write the macro:

(defmacro mylet (binds . body)
`((lambda ,(map car binds)

,@body)
,@(map cadr binds)))

(mylet ((a 2) (b 3))
(display a) (newline)
(display b) (newline)
(display (+ a a b)) (newline))

2
3
7



Why should you care about macros?

▶ Macros allow you to extend the syntax of a programming language.
▶ Rather than waiting for the language creators to implement a feature, you can do

it yourself.
▶ Modern languages are gradually catching up to Lisp:

▶ C++ templates and constexpr functions.
▶ Rust macros.



Thank You

Any questions?



Common Lisp version of mylet

Scheme:

(defmacro mylet (binds . body)
`((lambda ,(map car binds)

,@body)
,@(map cadr binds)))

Common Lisp:

(defmacro mylet (binds &rest body)
`(funcall

(lambda ,(mapcar #'car binds)
,@body)

,@(mapcar #'cadr binds)))



References & Notes

▶ On Lisp by Paul Graham (building languages on Lisp).
▶ Let Over Lambda by Doug Hoyte (building languages on On Lisp).
▶ My essay will be on Common Lisp, but I am using Scheme for this presentation.


