
Making Games without an Engine

Aidan Hall

March 21, 2024



What are we Talking About?

▶ Most game developers use large, general-purpose game
engines like Unity and Unreal, even for small and simple
games.

▶ These provide helpful features like scene editors, physics
simulation and asset stores.

▶ We’re going to throw all that away.



What does that Mean?

▶ Making games with just code, and basic libraries.
▶ Implement necessary engine functionality ourselves, in

addition to normal gameplay code.
▶ Alternative title: Making your own Game Engine.



Problems

▶ Things engines would deal with for you.
▶ Physics
▶ Scene management
▶ Rendering

▶ Potentially harder to port (especially true of C++).
▶ Slows development down.



Why Bother?

A user can think they understand what they are doing,
but they’re really just copy-and-pasting code around. Pro-
gramming thus becomes akin to magical rituals: you put
certain bits of code before other bits, and everything seems
to work.

– Jason L. McKesson, Learn Modern 3D Graphics Programming.



Motivation

▶ Learn how engine functionality is implemented.
▶ There’s a satisfaction to understanding how games work at a

deeper level.
▶ Acquire more general game development skills, rather than

being tied down to a specific engine or language.
▶ Might be all you need.
▶ Much less work to make a specialised engine.
▶ Not constrained by the engine.



Examples

▶ Braid
▶ Minecraft
▶ My games



Structuring Games

▶ Game engines provide the structure for what happens in a
game on each frame, and a mechanism to add functionality.
▶ In Unity, attach scripts to objects in the scene.

▶ There is always a main loop that defines this structure.
▶ It usually takes this general form:

int main() {
while (!GameOver()) {

ReadInput();
SimulateWorld();
DrawToScreen();

}
}

▶ But how is the data organised?



Data-Oriented Design

▶ ”The only purpose of any code is to transform data.”
▶ By focusing on the data, we can write programs that are

simpler and more efficient.



Entity Component Systems

Entities Individual objects in a game world.
Components Plain data attached to specific Entities.

▶ E.g. Vec2 position, Vec2 velocity, int
health.

Systems Functions that apply a transformation to every Entity
with a certain set of Components.
▶ E.g. Move an Entity: position += velocity



Snowmen Sledding

▶ Based on my own ”Tiny ECS”, TECS (c. 300 loc).
▶ Made with Raylib, so it runs on Windows & Linux!
▶ KeyboardInput component: Expresses game controls as data.



Retro Consoles

▶ Older hardware can’t run large game engines, or managed
languages like C# and Python.

▶ You have to use a native-compiled language (or assembly!) to
make games for these systems.

▶ There may be platform-specific constraints a game engine
designer didn’t account for.



Magic Battle

▶ A DS game, made using libnds.
▶ Created with TECS.
▶ No floating point hardware: Used fixed point instead.



Making Games in C++: Building

▶ C++ is a standardised language, with several
implementations.
▶ GCC
▶ MSVC
▶ LLVM/Clang

▶ There are also several build systems:
▶ Make
▶ Visual Studio
▶ SCons

▶ Most of these are (effectively) platform-specific.
▶ CMake is a cross-platform build system that handles

platform-specific details for us.
▶ It even supports cross-compilation.



Workshop

Windows winget install LLVM.LLVM Kitware.CMake
MacOS brew install llvm cmake

(requires Homebrew: https://brew.sh)
Debian & Ubuntu sudo apt install llvm cmake

https://brew.sh


Thank You

Website https://aidan.sites.uwcs.co.uk
Itch https://aidan-hall.itch.io

https://aidan.sites.uwcs.co.uk
https://aidan-hall.itch.io

